Organization of nonprimary motor cortical inputs on pyramidal and nonpyramidal tract neurons of primary motor cortex: An electrophysiological study in the macaque monkey.
نویسندگان
چکیده
To elucidate the functions of nonprimary motor cortical (nPMC) areas whose afferents synapse onto output neurons of the primary motor cortex (PMC), we examined the responses of pyramidal tract neurons (PTNs) and non-PTNs (nPTNs) to electrical stimulation in the three nPMCs, the supplementary motor area (SMA) and the dorsal and ventral divisions of the premotor cortex (PMd and PMv), with extracellular unit recording in alert monkeys. Typical responses of PTNs to nPMC stimulation were early orthodromic excitatory responses followed by inhibitory responses. Among 27 PTNs tested by constructing peri-stimulus time histograms, 19 (70.4%) showed inhibitory responses to stimulation in all of the nPMC areas. In contrast, 5/33 PTNs (15.2%) and 10/72 nPTNs (13.9%) showed excitatory responses to stimulation in all of the nPMCs. The inhibitory responses of PTNs were mediated by inhibitory interneurons, some of which may correspond to nPTNs in the superficial layers of the PMC. These interneurons probably possess widely extended axons and nonspecifically inhibit multiple PTNs in layer V. The excitatory and inhibitory influences, and the patterns of convergence of inputs from the nPMCs onto the PTNs, are important to understand motor control by the nPMC-PMC-spinal cord pathway.
منابع مشابه
The pyramidal cell of the sensorimotor cortex of the macaque monkey: phenotypic variation.
Recent studies have revealed striking differences in pyramidal cell structure among cortical regions involved in the processing of different functional modalities. For example, cells involved in visual processing show systematic variation, increasing in morphological complexity with rostral progression from V1 through extrastriate areas. Differences have also been identified between pyramidal c...
متن کاملExpression of Kv3.1b potassium channel is widespread in macaque motor cortex pyramidal cells: A histological comparison between rat and macaque
There are substantial differences across species in the organization and function of the motor pathways. These differences extend to basic electrophysiological properties. Thus, in rat motor cortex, pyramidal cells have long duration action potentials, while in the macaque, some pyramidal neurons exhibit short duration "thin" spikes. These differences may be related to the expression of the fas...
متن کاملOrganization of cortical and thalamic input to pyramidal neurons in mouse motor cortex.
Determining how long-range synaptic inputs engage pyramidal neurons in primary motor cortex (M1) is important for understanding circuit mechanisms involved in regulating movement. We used channelrhodopsin-2-assisted circuit mapping to characterize the long-range excitatory synaptic connections made by multiple cortical and thalamic areas onto pyramidal neurons in mouse vibrissal motor cortex (v...
متن کاملAlpha calcium/calmodulin-dependent protein kinase II selectively expressed in a subpopulation of excitatory neurons in monkey sensory-motor cortex: comparison with GAD-67 expression.
In situ hybridization histochemistry and immunocytochemistry, including double immunofluorescence, were used to study the populations of neurons expressing the alpha subunit of type II calcium/calmodulin-dependent protein kinase (CAM II kinase-alpha) or glutamic acid decarboxylase (GAD) in the somatic sensory and motor areas of the macaque monkey cerebral cortex. Sections were subjected to in s...
متن کاملLocalization of glutaminase-like and aspartate aminotransferase-like immunoreactivity in neurons of cerebral neocortex.
The distribution of glutaminase (GLNase)- and aspartate aminotransferase (AATase)-immunoreactive cells was examined in the cerebral neocortex of rat and guinea pig and in the somatic sensorimotor and primary visual cortex of the Macaca fascicularis monkey. These enzymes are involved in the metabolism of glutamate and aspartate, two amino acids thought to be excitatory amino acid transmitters fo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cerebral cortex
دوره 10 1 شماره
صفحات -
تاریخ انتشار 2000